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CHAPTER 1

INTRODUCTION

This report presents a moment method (MM) [1} [2' solution to two-dimen-

sional (2D) transverse magnetic (TN) scattering by a variable sheet impedance in
a multilayered slab. An integral equation is derived for the sheet impedance in the
multilayered slab. This integral equation is solved for the surface currents flowing
on the sheet impedance by employing a spectral domain MM/Green’s function
solution [3]. This solution is preferred because the Green’s function accounts for the
presence of the multilayered slab. Also, the fields in each layer of the multilavered
slab can be easily expanded as plane wave spectra, thus the NIM/Green’s function
solution is carried out in the spectral domain. A user oriented computer code was
written to implement this solution and numerical results are presented.

A sheet impedance is a model for an electrically thin dielectric layer. The sheet
impedances considered here can be variable, but they must be non-constant over
a single finite range. The multilayered slab is planar and extends infinitely in all
directions. The slab layers are of dielectric/ferrite materials which may be either
lossy or lossless. The geometry of the sheel impedance and the multilayered slab
is shown in Figure 1 in Chapter . The problem is to compute the 2D scattering
by this geometry from a TM incident plane wave.

The MM solution presented in this report is useful in that it allows for the

analysis of scattering from isolated scattering points and variable sheet imped-




ances. I‘or example, scattering from a single sheet impedance discontinuity can be
compuled, as well as scattering from a tapered sheet impedance where the tape
occurs over a finite width. Also, scattering from a finite width sheet impedance
variation can be computed. Finally. the sheet impedance may be located o a
multilavered slab, on a half plane, or entirely in: free space, and the scattering from
these configurations can be compnted.

The MM solution is begun by considering the sheet impedance and multi-
layered slab to be illuminated by a TN plane wave incident frem the angle o).
The variable sheet impedance is replaced by the parallel combination of two shect
impedances. One sheet impedance will be constant while the other sheet imped-
ance will be variable and/or constant and will produce the scattered field. Next.
the equivalence theorem is used to replace the “scattering” sheet impedance by
an unknown surface current Jg. The condition that the total field is the sum of
the incident field and the scattered field yields the integral equation for Js. The
unknown surface current Jg is expanded in terms of N known basis functions of
unknown strengths. The N cocflicients in this expansion are then determined by
the moment method. The scattered field is the sum of the individual fields of the
N basis functions multiplied by their respective strengths.

Some previous work has been published on the impedance sheet approxima-
tion and resistive and impedance sheet scattering. Harrington and Mautz [ 1] pre-
sented the impedance sheet approximation and applied it in a MM solution for TN
scattering by a thin diclectric shell. Senior [5] computed edge-on TN backscatter-
ing from a uniform resistive sheet hall plane in free space. Senior 6] also analyzed
backscattering from finite width resistive strips with attention focused on TM scat
tering near grazing incidence. Again, his analvsis concerned strips with uniform

resistance. Richmond |7] presented a MM solution for TM scattering by a finite




width electrically thin dielectric strip. [His solution used basis functions incorpo-
rating known physical properties of the problem geometry into the MM solution.
The MM solution presented in this report makes use of similar basis functions,
Newman (8] [9] used a MM/Green’s function solution to solve for scattering by a
dielectric/ferrite cylinder in the presence of a perfectly conducting halfl plane. This
solution can be used to model a PEC half plane with a vanable impedance taper
region at its edge. Newman and Blanchard [10] solved for TM scattering by an
impedance sheet extension of a parabolic cylinder using a MM/Green's function
solution.

Asymptotic work employing the uniform theory of diffraction (UTD) [} has
also been done in the analysis of thin dielectric/ferrite slabs. Rojas and Pathak
[12] [13] analyzed diffraction by dielectric/ferrite half planes and strips. Rojas [1 1]
also solved for scattering by an impedance discontinuity in a planar surface. Ly
[15] presented a UTD solution for diffraction by junction edges formed between
different electrically thin material slabs. For simple cases, the MM solution pre-
sented here was compared against the solution given in [15]. The agreement was
always excellent.

The format of this report is as follows. The basic geometry of the problem
is given in Chapter [I. Chapter Il also derives the integral equation and outlines
the MM solution for the sheet impedance in the multilayered slab. Chapter 111
presents results of TM plane wave scattering by several different sheet impedances
and multilayered slab geomnetries. When possible, these results were compared with
measured or previously calculated results. (thapter I'V briefly describes a computer
code written to implement this MM solution and is intended as a user’s manual
for the code. Finally, Chapter V gives a summary of this report and presents ideas

for further study.




CHAPTER 11

THEORY

2.1 Introduction

This chapter develops the integrel cquation and moment method solution 1o
the problem of 21) transverse magnetic (TA) plane wave scattering by a variable
sheet impedance in a planar multilavered slab. The sheet impedance must be non-
constant over a finite range for the MM solvtion presented here. The slab geometry
is illustrated in Figure | and a sheet impedance model is shown in Fignre 2.

The solution is obtained by first expressing the variable sheet impedance as
the parallel combination of two sheet impedances. One sheet impedance will he
constant while the other sheet impedance will he infinite, constant or variable
over different ranges and produces the scattered field. The equivalence theoren is
used to replace the scattering sheet impedance by an unknown surface current Jq.
Next, the integral equation for Jg is obtained by enforcing the surface equivalence
theorem on the sheet impedance surface. This integral equation is solved using a
spectral domain moment method (MAM)/Green's function solution which solves for

the surface current Js. Once Jg is known then he scattered fields are cotmputed.

2.2 Problem Geometry and the Integral Equation

This section presents the development of an integral cquation for the 2D trans

verse magnetic (TN) scattering by o variable sheet impedance, denoted Zgla).
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in a plane multilayered slab. As illustrated in Figure 1, the slab has K layers
with permeability and permittivity {yg, ;) and thickness Ty, k- 1,2, . K. The
material parameters of the free space region above the multilayered slab are de-
noted (py, €p) and the homogerrous region below the multilayered slab are denoted
(jeg41,¢k ¢1)- All fields and currents are two dimensional (they are independent
of y) and are time harmonic with the ¢J¥U time variation suppressed. In addition.
all electric fields and surface currents contain only a 3 - directed component so
vector notation shall nov be used and this polanzation is implicit.

A sheet impedance is a model for an electrically thin dielectric slab. For
example, Figure 2(a) shows a dielectric slab of thickness T and with material

T < 1,

parameters (fu),€). The wavenuuber in the slab is k = w /ge. If |k
then the slab is sufficieniiy thin that the electric field is essentially constant with
respect to z. In this case, as illustrated in Figure 2(b), the thin dielectric slal can

be replaced by the zero thickness sheet impedance (0]

Zs

.

Jw(e —e)T
Although Figure 2(a) shows a homogeneous diclectric slab of uniform thickness,

Equation (2.1) also applies to a slab in which T and/or € are functions of r.

The sheet impedances considered here have the property that for some ranges
of z, Zg(z) = Zgy is constant, while {or other ranges of z, Zg(x) is an arbitrary
function of . Furthermore, the range over which Zg(x) is non-constant (Zgq or
otherwise) must be finite {5 allow for a feasible sub-demain basis function expan-
sion in this region. Some typical Zg(r) are shown in Figure 3. IFigure 3(a) shows

the most general sheet impedance with an arbitrary variation for 0 <2 < [, and

i |
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which is constant at Zg, or Z 4 outside this range. For example, in Figure 3(h)

Zgy ifx <0
Zs(x) Zy il <a < L (2.2
Zgy ifae > L.
The Zg(xz) in Figures 3(¢) and 3(d) differ from Zgy over a semi-infinite range.
Hlowever, Zg(x) is non-constant over a finite range of z, as required. In particular,
for Figure 3(c)
Zgy Ma<0
Zy ez >0,
and for Figure 3(d)
A if e <0
Zsr) Zp(re) Al 0 < <L (2.1
74 ifa > L
where Zp(2) is an inipedance taper function providing a smooth transition from

Zgy to Z 4 over the range 0 =~ 2 < L.

A simplified sketch of the multilayered slab containing Z¢(2) is shown in
[igure 4(a). Newman showed that the equivalent sheet impedance of a thin multi-
layered dielectric slab is given by the parallel combination of the sheet impedances
of the individual layers {10}, Thus, the sheet impedance Zg(x) can be represented
as the constant sheet impedance Zg in parallel with another sheet impedance, de
noted Zgp(ir). This equivalent geometry is shown in Figure -{(b). Zg(a) is given

by
_ZsoZsp(r)

ASED
str) Zsy V Zgp(r)

from which it is found that Zgp(r) is given by

ZsuZs(r)

Zop(e) - : .
splr Zsy -~ Zs(r)

(2.6)




Figure 3: Typical sheet impedance variations.
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Figure 4: Fquivalent geometries used in deriving the integral equation.
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The scattered field is produced by the parallel sheet iml)edallée Zgp(z), which
is finite only where Zg(z) # Zgg. As illustrated in Figure 4(c) the volume equiv-
alence theorem can be used to replace Zgp(z) by the surface current [10]

E't
Zgp(z)’

where E? is the total electric field on the surface of Zgp(x). Note that Jg(z) is

Js(z) = (2.7)

non-zero only where Zg(z) # Zgq, and that Jg(z) radiates the scattered field E¢
in the presence of the multilayered slab of Figure 4(c). The term “multilayered
slab” refers to the K material layers and the sheet impedance Zgy, but not Zgp(z).

The total electric field is the sum of the incident plus the scattered field, i.e.,
E' = E' + E° (2.8)

where E' is the field of the incident plane wave in the presence of the multilayered

slab of Figure 4(c). Combining Equations (2.7) and (2.8) yields
~ E* 4+ Zgp(z)Js(z) = E*. (2.9)

This is the basic integral equation for Jg(z) because the electric field E° can be

expressed as
/G (z'|e, 2) Js(z') dz (2.10)

where G;(:c'lcc,z) is the g component of the dyadic Green’s function for the mul-
tilayered slab containing Zgy. The § component of the dyadic Green’s function is
chosen because the surface current is g - directed. However, the dyadic Green’s
function will not be used in this analysis but is used only to show the form of the

integral equation. Equation (2.9) will be solved for Jg(z) in the next section using

the MM.

11




2.3 Moment Method Solution

This section presents the development of the moment method solution to the
integral equation developed in the previous section. The unknown surface cuarrent
is approximated by a sum of N known basis functions of unknown strengths. 'he
choice of the basis functions is discussed in Section 2.8. By taking an inner product
of Equation (2.9) with a set of N weighting functions, a matrix equation is formed.
The weighting functions will be chosen identical to the basis functions making this
a Galerkin solution [I]. Finally, general expressions for the matrix elements are
given. Note that all electric fields and surface currents are y - directed so vector
notation is not used.

The moment method solution is begun by approximating the unknown surface
current Jg(z) as a sum of N known basis functions as follows:

N
Js(x) = ) Indn (2.11)

n=l
where the I, are the N unknown strengths of each basis function and the J;, are the
N known basis function expansion modes. Substituting the approximate surface

current Jg(z) of Equation (2.11) into Fquation (2.9) it is obtained that
v N |
N LBt Y lydyZgplz) - E (2.12)
n | n |

where [, is the electric field of the n'® basis function Jy radiating in the presence
of the multilayered slab (containing Zgy). By taking the product of Equation
(2.12) with each weighting function Jy,, for m - [,2,..., N, and integrating then
over the region of the weighting function, it is obtained that

N N
3 I / Ep dode + 3 1, / Tod Zsp(e)de — [ B Jde. (203
Jm nol Jm

Jim
n=:1




The limit m on the integrals in the above equation denotes that the range of
integration is over the region where thJy,, is non-zero. Equation (2.13) represents
a set of N equations with N unknowns. This set of equations can be written

compactly in matrix form as
(Z + AZ] [I] = [V] (2.14)

where [Z + AZ| is the N x N impedance matrix, ([] is the length N vector of un-
known strengths, and [V] is the length N voltage excitation vector. The following

equations define the elements of the impedance matrix and the voltage vector:

Do = /m Ern Jo d2 (2.15)
AZpmn = /mJn Jm Zsp(z) de (2.16)
Vi = /m E' Jpm da. (2.17)

Reciprocity can be applied to Equation (2.17) to obtain an expression for the
voltage vector elements in terms of E,,, the electric field of the mt? weighting

function Jy,. The resulting reciprocal expression is
Vi = /Em Jidv (2.18)

where J* is the impressed current that radiates the incident electric field £*. The
integral is over the volume of the impressed current.

The Z,,, impedance matrix contributions are distinctly diflerent from the
A Zmn contributions. Equation (2.15) contains the electric field of the basis func-
tions radiating in the presence of the multilayered slab. However, Equation (2.16)
does not contain any electric fields. The Zm, terms result from the field of the
basis functions in Equation (2.9), whereas the AZ,, terms result directly from

the basis functions. As a result, the Z,,, terms require further evaluation, but the

13




A Zmn terms can be evaluated directly from Equation (2.16) for known basis and
weighting functions and surface impedance,

Note that both Fquations (2.45) and (2.18) contain the clectric lields of the
basis functions and weighting functions radiating in the presence of the multilay-
cred slab. The next section develops expressions for these electric fields and uses

them to evaluate the impedance matrix elements.

2.4 Evaluation of the Impedance Matrix Elements

This section obtains an exact integral expression for the impedance matrix
clements from the general expression given by Fquation (2.15) in the preceeding
section. An expression for the total electric field of the basis lunction J,, radiating
in the presence of the multilayered stab will be developed using the plane wave
expansion method [161 This expression will he nsed in the evaluation of the
matrix clements of Equations (2.15) and (2.18). This section evaluates Equnation
(2.15) in the spectral domain.

A separate plane wave expansion for the fields is used in cach laver of the
slab. in the free space region above the slab, and in the homogencous region helow
the slab. Thus, for a K lavered slab, there will exist K 1 2 separate regions, cach
with its own plane wave expansion. In the following analysis, the notation for the

subscript and superscript k is:
o k - 0 implies the free space region above the multilayered slab,
o k1,2, K implies the k' Tayer of the multilayered slal, and

o kK + 1 implies the homogeneaons region below the multilayered slab.




The basis functions J, are assumed to be Fourier transformable with the

Fourier transform pair defined as

- + 00 .
Jﬁt _—_/ Jn etiBe 4y (2.19)
—00
1 +o0 . .
Jn = — / J3 eFibe g, (2.20)
2 — 00

JT are referred to as the “plus” and “minus” Fourier transforms of Jy,.
n
The surface current lies on the interface between two regions so each region
can be considered source free. Thus, the electric and magnetic fields in each region

must satisfy the source free vector wave equation

k
n

(V2 + kf) =0 (2.21)

Hk

n

where k;, = w,/lpe€; is the wave number of the kth region. The total § - po-
larizer electric field in region &k, produced by Jn radiating in the presence of the

multilayered slab, is expressed as a continuous spectrum of plane waves, i.e.,
k 1o k Y12 k vz | ,jiBz 9 oy
Ehz,2) = [ [af@) e 4 Bh@) et | 7 dg (2.22)

where Aﬁ(ﬁ) and B,"i(ﬂ) are spectral weighting functions to be determined, and
vk is a propagation constant for waves travelling in the z direction. Applying

Equation (2.21) to Equation (2.22) yields the separation equation

Tk =\ B2 - k,% ; Re(yg) > 0,Im(y;) > 0. (2.23)

This relates the propagation constant y; to the plane wave spectrum parameter
3. The conditions on 7} insure that the wave decays in the direction it travels.

In this manner, the term of Equation (2.22) associated with A%(3) is an upward

15




travelling wave and the term associated with B,k,‘(ﬂ) is a downward travelling wave.

Fxpressions for the magnetic field are obtained from Maxwell's equation
A O Juwp . (2.2.1)

Applying Fquation (2.21) to Fguation (2.22) the following magnetic field is ob-

tained:

. I o Uk . . . A
H,l‘w.(;r,:) — / Tk },lf,(/i)(‘ Tk lfﬁ(‘d)rﬂ'k‘ ‘ g (2.25)
Jeptyp o<
k l b ko LY k Y5z dr : .
e (r.:) --«---/ AL e 2Bk e 0T, (2.26]
Wity o

Next, the functions .lf;(d) and I?,";(d) must be determined. These inctions

are determined by enforcing the following conditions on the fields:
. the radiation condition as r + x,
2. continuity of the tangential electrie field across each interface.

3. continnity of the tangential magnetic field across cach interface except the

= Ointerface, and

1. discontinuity of the tangential magnetic field, by the total surface current

produced by, across the = Ointerface, t.e.,

7200 L M & AR I (

IS
e
-1

where b and & 4 1 represent the regions inunediately ahove and below the

f

z = 0 interface respectively and J5, is the total surlace carrent produced by

gy

16




Jt

t contains only a y - directed component which at the z = 0 interface can be

writlen as
k
En( 0) S Erz(l"’())
Jn —.

Jt = :
" 55(1) Z50

(2.28)
In Equation (2.28) EXtL could have been used instead of Ek since the tangential

electric field is continuous across the z = 0 interface.

-

5).
and substituting Equations (2.20) and (2.22) into Equation (2.28), the electric field

Enforcing the above conditions on the fields of Equations (2.22) and (2.2

E,’i is obtained in terms of j,,,. In Appendix A it is shown that the electric field at

the z = 0 interface is given by

Eb(z,0) = - 5 / F(8) J - 5% 43 (2.29)

where F(f) is a spectral function specific to the multilayered slab geometry. F(3)
can be viewed as a spectral domain Green’s function. See Appendix A for the
determination of F(8) for several simple geometries, such as the sheet impedance
located in a K = 2 layered slab, on a material half space, and entirely in [ree space.

The impedance matrix elements are obtained by substituting Equation (2.29)

into Equation (2.15) to obtain

+oo
Zmm - / / Jo e g, dg dr. (2.30)
271‘ m

Reversing the order of integrations, and employing the Fourier transform relation-

ship of Equation (2.19), it is finally obtained that
1 +00 sy
T~ — / F(8)J7 J dg. (2.31)
27w J-o00

This is the so-called spectral integral foriula for the impedance matrix elements.
This integral expression is preferable to using Equation (2.10) in Equation (2.15)

because there is only one integration. Furthermore, the dyadic Green’s function
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for the multilayered slalb need not be determined. However, the function 17(.9)
mest be determined. Note that determining the impedance matrix elements for
different multilavered slab geometries is trivial. A that needs to be done is to
tnsert the Fod) corresponding 1o the geametry of interest into Faguation (2.31).

Thus. different spectral functions I'(d) can he used for ditferent geometries,

2.5 Numerical Evaluation of the Impedance Matrix

The impedance matrix elements given by Equation (2.31) will be evaluated
numerically. There are two problems encountered in the numerical evaluation
of the impedance matrix. The first problem is the CPU time required for the
compitation of the impedance matrix. The second problem is that surface wave
poles produce singularities in the integrand of the spectral integral formula. This

section discusses these problems.

2.5.1 CPU Tine Reduction

The spectral integral formula for the impedance matrix elements is given hy
Fquation (2.31). Noting the form of the equation, the re-evalunation of the same
quantitics can be eliminated by computing all the elements in a parallel fashion.
Thus. the entire impedance matrix should be computed in just one numerical

integration with a matrix multiphication performed inside the integral, i.c..

[, , . ] [ -
Ly vy oo 2y T
Zoy Aoy e Zoy I Ty o .
) 3;{_ / . ,'(A',) ,II I‘) ,‘\ di
ANy ANy s AN N

Note that in this evaluation of the impedance matrix. the quantities F(3). J,}

and J,, arc evaluated only once at cach value of J cmploved in the numerical
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integration. This results in an immense savings in CPU time required for the

impedance matrix computation.

2.5.2 Surface Wave Poles

The spectral function F(8) in the expression for Zyn of Equation (2.31) may
contain poles which make the integrand singular. Physically, these poles corre-
spond to surface waves that exist on the multilayered slab containing the constant
sheet impedance Zgy. The number of surface wave poles can increase with in-
creasing frequency. Typically, for lossless layers, these poles lie on the Re(3) axis
between kg and kp, = the maximum wavenumber of a layer medium. For lossy
layers, these poles will move into the second and fourth quadrants, but for only
slightly lossy layers they will be close to the Re() axis. If the poles are close to or
on the Re(8) axis, they will distort the numerical 3 integration for Zmy, unless the
integration path is staggered around them as shown in I'igure 5. This staggered
contour will produce an accurate result since the staggered contour does not cross

any poles, nor does it pass too closely to their singularities. This staggered contour

method has worked well for A given by

[02 if 1< 5Ap 23

1 AD, i /W otherwise

where 11" is the width of the pulse basis function region and Ap_ . is the wavelength

in medium kp___. The contour then returns to the Re(8) ax’s around 1.2kp .

2.6 Evaluation of the Voltage Vector Elements

This section obtains an expression for the voltage vector elements from the
expression given in Equation (2.17) for the case of a uniform incident plane wave.

The geometry of the incident wave is shown in Figure 4(a). An impressed current
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Figure 5: Integration contour for Z,,,, in g plane.

source that radintes a plane wave in the far zone in free space will be defined so that
the reciprocal expression of Equation (2.18) can be used. Finally, an expression for
the far zone field of a basis unction radiating in the presence of the multilavered
slaly will be obtained. This far zone field expression will be used in the evaluation
of Equation (2.18) and also in the computation of the far zone scattered field. The
formulation outlined here assumes that the wave is incident from the upper half
space z > 0. A similar approach can be used if the wave is incident from the lower
walfl space.

The incident plane wave tthuminating the multilavered stab is

I"vl ; 7 L'n(_:l‘ cos d\() o osin d’() ) ) (2;' )

This field will be produced by the impressed curvent line source

g xSy (

[§%
“
4 |

; \/?;(
w
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located at the point (p,¢¢) in the limit as p — oo. It should be noted that the
strength of J* depends upon the distance p, so that E? has unit amplitude near
the origin.

Substituting Equation (2.35) into Equation (2.18) it is obtained that

8k e .
VT eI T fpelkor (2.36)

Wiy

Vim = — Fm

where E,, is the field of Jy, evaluated at (p, ¢y), the location of the impressed
current source J'. The method of stationary phase is used to asymptotically
evaluate Ey, {17] [18] in Appendix B. Ey, is found to be of the form
e~ Jkop

VP

where Py(¢y) is a function of ¢y dependant upon the multilayered slab geometry.

(2.37)

L = Pm(d’o)

See Appendix B for the evaluation ol Ey, for several simple geometries. Substitut-
ing Equation (2.37) into Equation (2.36) the voltage vector elements are [ound to

be
V8rky i3 (2.38)

€
Wit

Vi = - Pm(d’O)
This completes the discussion of the calculation of the voltage vector elements.
2.7 Computation of the Scattered Ficld
Once the impedance matrix and voltage vector are known, the current vector
can be obtained using standard matrix algebra. Then, once the current vector is
known, the far zone scattered field can be obtained as the sum of the far zone field

of each basis function J, multiplied by its respective strength I,. Thus. the far

zone scattered field is be given by

N
ES = 3 LEY (2.39)
=1
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where [, is the strength of J,, and I:':: is the far zone field of J,, radiating in the
presence of the multilayered slab. The far zone ficld of a basis function is deter-
mined asymptotically in Appendix B and is given by Equation (B.5). Substituting
Equation (3.5) into kquation (2.39), the scattered field is found to be

iv: / ( c Thap ( )
I’z‘s ln )n' (/))-——— 21”
n=1 \/ﬁ

where I, () is dependant on the multilayered slab geometry and is also determined

in Appendix B and is given by Equation (B.6).

2.8 Basis and Weighting Functions

This section discusses the basis and weighting functions used in the MM so-
lution. The weighting functions are chosen identical to the basis functions making
this a Galerkin solution. It will be explained how the choice of basis functions
is determined by the nature of the sheet impedance Zg(x). All basis functions
are Fourier transformable, as required by the spectral integral formula for the im-
pedance matrix elements. The basis functions and their Fourier transforims are
presented below.

Recall that the surface current Jg(a) is non-zero in the range of z where
Zg(z) # Zgy. Therefore, Jg(z) must be expanded in terms ol basis functions in
this range. Furthermore, the range where Zg(z) 4/ Zgy can be either finite or
semi-infinite. However, the range where Z¢(r) is non-constant must be finite to
allow for a feasible subsectional hasis function expansion in this range.

Figure 3(h) shows a case where Zo() / Zgy over a finite range of . In this
case, Jg(r) is expanded in subsectional basis functions over this range. Pulse func-
tions are chosen as the subsectional basis functions in this MM solution. Figures

3(c) and 3(d) show cases where Zg(a) # Zgg over a semi-infinite range of z. In
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these cases it would be impossible to express Jg(z) as an expansion of subsectional
basis functions over the entire semi-infinite range because N — oo. To circumvent
this problem, Jg(z) is expanded in terms of pulse basis functions only in and near
the range where Zg(z) is non-constant or discontinuous. Tn addition, Jg(a) is
expanded in terms of physical semi-infinite domain basis functions outside of this
range. A physical basis function is a basis function with a variation dependant on
a physical characteristic of the problem geometry. These basis functions incorpo-
rate known variations into the MM solution. Thus, some insight into the problem
is required to choose this type of basis function. For example, a physical optics
(PO) basis function is chosen to account for the current variation induced by the
incident plane wave. Also, surface wave basis functions are chosen when surface
waves can be supported by the sheet impedance. These are the two types of phys-
ical basis functions used in this MM solution. They are semi-infinite domain basis
functions because they extend to infinity in the +& - direction. It is assumed that
the current far enough away from any non-constant variations or discontinuities
of Zg(z) can be approximated accurately by only the PO and surface wave basis
functions because Zg(z) is constant in this range.

Figure 6 shows the choice and placement of basis functions needed for a proper
and complete expansion of Jg(z) for three typical variations of Zg(z). It should be
noted that in Figures 6(b) and 6(c) surface wave basis functions should be included
only if the multilayered slab geometry can support surface waves. However, surface
wave basis functions need not be included (even if the geometry can support them)
if the surface wave decays to insignificant strength in the pulse basis function
region. If the slab layer is lossy enough, or the surface wave propagation constant
provides rapid enough attenuation, then this will be the case. In these cases, the

current variation near the non-constant or discontinuous sheet impedance, caused
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by the attenuated surface wave. will be approximated well enougn by the pulse
basis functions alone.

I the range where Zg(a) + Zgy is finite, then pulse basis functions are used
over the entire range. 10 Zg(r) / Zgp over a semiinfinite range, then pulse
hasic finctions are nsed in and near the range where Z0(0) is nion constant or
discontinuous, i.e.. they are nsed over a range starting where Zg(a) fivst deviates
from Zgg, and ending far enough heyond where Zg(a) has become constant once
again that Jg(#) can be approximated by only the PO and surface wave basis
functions. In cither case, the range where Jg(2) is expanded in terms of pulse
basis functions is finite. This fintte range is divided into NV segments and a pulse
basis function is placed on cach segment. The pulse basis functions are of the form

I over segment n
Jn_ ) (2‘[)

0 otherwise.
Applying the Fourier transform of Equation (2.19) to the pulse basis functions,
the transforms are found to be

2 . u
oo L3y sin( =) (2.12)
/

th h

where a,, is the center of the 0" segment and w,, is the width of the ! segment.
The PO basis function is used when Zg(r) # Zg) over a semi-infinite range.
It is used to model the current variation induced by a plane wave incident on a
constant sheet impedance. The 7 variation of the incident plane wave is elkT cos by
where ¢y is the angle of incidence. Thus, the PO basis function is chosen to be
(_)lx'nn'rns iy if o - > o)
Jn {2.43)
0 otherwise

where 2 pgy is typically 0 or the value of + where the pulse basis functions stop. 1f

the free space region k& 0 s viewed as a slightly lossy media in the limit as the
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Figure 6: Choicc of basis functions for typical Zg(x) variations.
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loss vanishes, then J,, will be Fourier transformable with the transform

(‘J'(_ Fi3 1 kg cos bl poy
]( }X'} | I\"“ COS (/)ﬁ) '

Note that the PO basis function depends on the incident angle ¢;. Therefore,

J.! (2:41)
cach time the incident angle changes. as in a backscatter pattern compuiation,
the impedance matrix changes. More specifically, as ¢, changes, the rows and
columns of the impedance matrix associated with the PO basis function must be
recomputed.

The surface wave basis function is also used when Zg(a) # Zg, over a scmi-
infinite range. lowever, it is used only when a surface wave can be supported by
the multilayered slab geometry. Recall that if a surface wave exists and it decays
quickly enongh. then a surface wave basis function does not need to be included
for that surface wave. The surface wave basis function is used to model the current
variation associated with a surface wave, “launched” from the deviation of Zq(r)
from Zgq, which travels in the +a - direction. [n general, more than one surface
wave can exist. If a surface wave is launched, it will have the lollowing @ variation:

Re(yg) > 0

e ST where (2.15)

Im(yg) < 0
where jyg is the surface wave propagation constant. The conditions on 7¢ insnre
that the surface wave decavs as it travels in the 2 - direction. The surface wave
basis function is chosen to be

ACES ifr >axg
g (2.16)

0 otherwise
where g is typically 0 or the value of o where the pulse basis functions stop. J,,

is Fourter transformable with the transform

(0 doag)rg
S (2.17)
" e 59)

~

26




To use surface wave basis functions, the surface wave propagation constants
mnust first be obtained. However, it should be noted that surface waves will not
always exist. If they do exist, the surface wave propagation constants for a mal-
tilayered slab geometry are the poles of the function F(8) where Zg is replaced
by the sheet impedance the surface waves exist on. F(3) is given in Appendix A
for several multilayered slab geometries. [u general, solving for the surface wave
poles will result in a transcendental equation which can be solved numerically. The
surface wave poles must satisfy the conditions stated in Equation (2.45). When
choosing surface wave basis functions, those associated with propagating and slowly
decaying surface waves should be chosen first since they are the dominant modes.

In this MM solution, surface wave basis functions are included only in the
case where Zg(z) is entirely in free space, i.e., no material layers exist. However,
surface waves cannot exist on a purely real sheet impedance in free space [19]. In
Figures 6(b) and 6(c), if Im(Z 1) # 0, then a surface wave will travel in the 42 -
direction along Z 4. In this case, solving for the poles of Equation (A.20) where

Zgy — Z 4, the surface wave propagation constant is found tu be

Z?
Jvs = Ljko ! - (2.48)
123

£

where Z) = ,/%3 is the characteristic immpedance of free space. The root of Equa-

tion (2.48) is chosen so that the conditions of Equation (2.45) are satisfied.
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CHAPTER III

NUMERICAL RESULTS

This chapter presents results obtained from the MM procedure outlined in
Chapter II. The results include computled backscatter from various sheet imped-
ances and multilayered geometries. The results are compared with measurements

and previously calculated results.

3.1 Convergence and Current Distribution Results

This section shows convergence data on the echo width scattered by a perfectly
conducting hall plane for edge-on incidence. Figure 7 shows the edge-on echo width
versus the width of the pulse basis function region, labeled W in the figure. The
PO Dbasis function is required. The frequency is 300 MHz so that A = 1 meter.
Each pulse basis function is 0.1 wide and the W is varied from 0 to 3A. Thus, the
number of pulses varies from 0 to 30 pulses. It can be seen that the echo width
converges to within 0.25 dB of the exact value at a pulse region width of about
1). This appears to be the best this MM solution can do for a pulse basis function
width of 0.1, If greater accuracy is desired, a smaller pulse width can be used.

Figure 8 shows the edge-on echo width versus the width of the individual pulse
basis functions, labeled D in the figure. Once again, the PO basis function is used
and the frequency is 300 MHz. The pulses are placed over the first wavelength (W

= A) and D is varied from 0.033 to 0.25. At D=0.033 there are 30 pulses and at
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D=0.25 there are 4 pulses. The MM solution converges nicely, thus demonstrating
the accuracy of the solution.

The MM current distribution for a typical basis function expansion is com-
pared to the exact current distribution on the PEC half plane {5 in Figure 9. The
MM current distribution uses a PO basis function starting at zpy = 0. Also,
10 pulse basis functions of width 0.1) each are used over the first wavelength of
the PEC half plane. The frequency is 300 MHz (A = | meter) and the current
distribution is plotted over the first two wavelengths of the half plane. The MM
and exact currents are in reasonable agreement with one another. For the range
0 < z < ), the current consists of pulses superimposed on the PO current, thus
giving the distribution the slightly modified staircase shape. For # > A the current
distribution consists only of the PO current. This can be seen in the constant
magnitude and linear phase of the current in this region. It is interesting to note
that the MM current at the center of the first pulse is about 1.44 times the exact
current at this location. The exact current has a 71; dependance near the edge of
the half plane. The average value of the exact current over the first pulse width
divided by its value at the center of the first pulse is v/2 = 1.41. Thus, despite the
appearance of the current plot, the MM current distribution does a very good job

of approximating the exact current over the first pulse region.

3.2 Backscatter Versus Frequency Results

This section presents a comparison of measured backscatter from a sheet im-
pedance located in a K — 2 layered slab with results obtained from this MM
solution. Measured and computed echo width versus {requency are compared.
The MM computations were obtained using an impedance matrix interpolation

method [20]. The inserts in Figures 10 and 11 show the multilayered slab geome-
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try analyzeu here.

The geonietry consists of a sheet impedance like that shown in Figure 3(b)
given by Equation (2.2). Referring to Equation (2.2) the sheet impedance is defined
by Zgy = 65§ and Z 4 = 0 or co. The finite width where Z 4 exists is L = 7.62cm.
This sheet impedaiice is located in a K = 2 layered slab. Both layers are lossless
and have permeability g9 and relative dielectric constant ¢, = 2.6. The thickness
of the layers is T = Ty -~ 0.57cm.

Figures 10 and 11 show plots of measured results compared with results ob-
tained from this MM solution. Figure 10 corresponds to Z4 = oo and Iigure 11
corresponds to Z 4 = (). The figures show backscatter versus frequency at ¢y = 30°.
The MM computations were made using impedance matrix interpolation. The im-
pedance matrix was computed every Af = 1 GHz and echo width was calculated
every Af = 25 MHz. 33 pulse basis functions were used in the range from 4 to 8
GHz and 50 pulse basis functions were used from 8 to {2 GHz. This corresponds
to a pulse width of about 0.1Ap at the highest frequency in each range where Ap
is the wavelength in the dielectric layer. The solid curves are the calculated data
and the dashed curves are the measured data. The results agree reasonably well,
especially for Z4 — oco. The data took about 22 minutes per plot to compute on

a VAX 8550.

3.3 Backscatter From a Sheet Impedance in Free Space

This section presents backscatter from a sheet impedance half plane in free
space. The geometry i1s sketched in the inserts of Figures 12 and 13. Several
values for purely resistive and purely reactive sheet impedances are considered
with backscatter patterns of their echo width included.

Figure 12 shows the computed backscatter echo width of a purely resistive
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sheet imnpedance half plane in free space. The sheet impedance is of the form
shown in Figure 3(c) given in Equation (2.3) where Zg) - oo and Z4 - Rg
with Rg — 0,100,500.2000, 10'Q. The echo width is given in dB-m and was
calculated at 300.0 MHz. There were 10 pulse basis functions of width 0.1\
10cm each covering the first wavelength of the half plane. [Furthermore, the PO
basis function (starting at rpp = 0) had to be included, making a total of 11
basis functions. No surface wave basis [unction was used since a purely real sheet
impedance cannot support a surface wave. The edge-on backscatter at ¢y, - 180°
i3 in excellent agreement with values previously calculated by Senior [5]. These
points are indicated as large dots at 180° in Figure 12. Also, the NM results
computed here check out very well against the asymptotic results of Ly {15]. Plots
comparing these results were too similar to include here. The data in Figure 12
took about 28 minutes of CPU time to compute on a VAX 8550,

Similarly, Figure 13 shows the computed backscatter echo width of a purely
reactive sheet impedance half plane in free space. The sheet immpedance is of
the same form given in Equation (2.3) where Zgy = oo and Z4 = -7 Xg with
Xg = 0,100, 500, 2000, 104Q2. The echo width is given in dB-m and was calculated
at 300.0 MHz. There were 10 pulse basis functions of width 0.1A = 10cm over the
first wavelength of the half plane. The imaginary sheet impedance can support
a surface wave so the surface wave basis function was included. It started at
¢ = 0 and had propagation constant given by Equation (2.48). With the PQ basis
function, a total of 12 basis functions were used. 'The imaginary sheet impedance
scaltering results also check out very well with the work of Ly [I5]. The data in

Figure 13 took about 31 minutes to compute on a VAX 8550.
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3.4 Backscatter From a Tapered Sheet Impedance Half Plane in Free
Space

This section presents results of backscatter from a tapered sheet impedance
half plane in free space. The geometry is sketched in the insert of Figure 14 and
the sheet impedance variation is described below. Backscatter patterns of echo
width are included for several different linear impedance tapers. Also, backscatter
patterns from a linearly tapered and a exponentially tapered sheet impedance are
compared against results from Newman (8] {9].

The sheet impedance variation is similar to that shown in Figure 3(d) given
by Equation (2.4). The sheet impedance tapers linearly from 10002 to 02 over
the width L. For ¢ > L the sheet impedance is zero, i.e., a perfectly conducting

half plane. Referring to Equation (2.4), the sheet impedance considered here is

given as
00 ifz <0
Zs(z)=q 1000 (1-%) if0<z<L (3.1)
0 if z > L.

Backscatter patterns were computed for L = 0,A/4,A/2, X and 2A. The backscatter
patterns of echo width in dB-m are shown in Figure 14 and were computed at 300
MHz. In each case, pulse basis functions of width 0.05A were placed over the
impedance taper region and the first wavelength of the PEC, i.e., they were used
fromz = 0 toxz = L + X\. The PO basis function had to be included and it started
at £pg = 0. The data of Figure 14 took about 145 minutes of CPU time on a
VAX 8550.

For comparison, backscatter patterns from linearly tapered and exponentially
tapered sheet impedances were compared with Newman’s results. The width of

the impedance taper region is L = A in both cases. The linear impedance taper
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is that of Equation (3.1). The exponential impedance tapers from 10009 to 109

exponentially and is given as

Zs(il?) — 1Oe~4.61(z——L)/A fo<z<IL (32)
0 ifz > L.

Figure 15 shows the results of this MM solution compared with Newman’s results
for both impedance tapers. The results are in good agreement, thus demonstrating

the accuracy of this solution.

3.5 Backscatter From a Tapered Sheet Impedance Discontinuity in
Free Space

This section presents results of backscatter from a tapered sheet impedance
discontinuity in free space. The geometry is sketched in the insert of Figure 186.
The problem considered in this section is similar to that of the previous section
with the main difference being that the “background” impedance Zg is 10052
instead of infinity. Backscatter patierns are included for several linear impedance
tapers. Also, backscatter patterns from a linearly tapered and a cosinusoidally
tapered sheet impedance are compared.

The sheet impedance tapers linearly from 1002 to 0§2 over the width L and

can be given by

100 ifz <0
Zs(z)=1{ 100(1-%) ifo<z<L (3.3)
0 ife> L.

Backscatter patterns were computed for L = 0,A/4,1/2, X and 2\ at 300 MHz and
are shown in Figure 16. In each case, pulse basis functions of width 0.05) were

placed fromz = 0 toz = L+ A. The PO basis function had to be included starting
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at 2pg = 0. The data of Figure 14 took about 145 minutes of CPU time on a
VAX 8550.
A cosinusoidal sheet impedance taper from 100§ to 0 of width L = A was

also analyzed. The cosinusoidal impedance taper is given as

T

Zg(x) = 50 + 50 cos ( 7

) for0<z < L. (3.4)

The backscatter from this impedance taper is contrasted with the linear imped-
ance taper of the same width in Figure 17. Both sheet impedances had the same
basis function expansion of 40 pulse basis functions of width 0.05) over the first 2

wavelengths. Both cases also used the PO basis function.

43




[N NS A T N T N U B DA O O O A B A A O O AN N A SN

20

0

(dB-m)
-20

Povernrron gy s brnr g

-40

[BENEN RN

-60

ECHO WIDTH

nnnnnnnnnn
vvvvvvvvvvvv

-80

IIILllLllllllllllllllllllllllllllllllllllllllllll![lll]llll

i b
Tf1ll]lllll]lIIllllllll]lllIIIIIIIT

0 30 60 90 120 150 180
ANGLE ¢

-100

Figure 16: Backscatter by a linearly tapered sheet impedance discontinuity in
{ree space.

44




RN ENE RN N AT SN BN A A

o
N ]
] £=300MHz ;
o 2 3
= 3 cosine , . .
| © 3 taper W, A\ 3
%(Tl —: \//// \\ ?_
~ J linear \ AN ]
. \ J
ao : taper / , \ .
<t .
A . /// E \\ 3
E 3 // ¢ \\\ -
. i 0 N ]
O3 : 7" 1000 \ A=
5' 31 /0 Zg(x)=0 \\ :
= . \ ,/ (PEC) X \\ 3
o . (’ AR — - \\ .
1, ]
- >\ -
0o I | | =
- / \\\:
3 .05\ pulses over 2\ -
O + PO basis function
8 . L] TIIIIIIIIIIIIITT TTT' T 7T 1T 171 I VT TT
"0 30 60 90 120 150 180
ANGLE ¢

Figure 17: Comparison of backscatter by linearly and cosinusoidally tapered
sheet impedance discontinuities in free space.

45




CHAPTER 1V

DESCRIPTION OF COMPUTER CODE

This chapter describes briefly a computer code which implements the NIM
solution outlined in Chapter II. The computer code has been named the “Zg(z)”
Code (ZSX) by the author. ZSX can analyze the three multilayered slab geome-
tries considered in Appendices A and B. These geometries are a sheet irupedance
located in a K = 2 layered slab, on a material half space, and in free space. ZSX
can calculate bistatic or backscatter patterns, current distributions, and frequency

sweep data. The inputs and outputs for ZSX are explained in this chapter.

4.1 Input and Output Files

ZSX utilizes one input file and two output files. The input file, INFIL.DAT,
contains all the input data to ZSX, i.c., all the input data are read from IN-
FIL.DAT. INFIL.DAT must be assigned to logical unit 8. The first output file,
OUTFL.DAT, contains the output of ZSX. After a run, OUTFL.DAT contains
the input data used in that run, the problem geometry and basis function expan-
sion used, and a tabular listing of the electromagnetic calculations if any were
made. QOUTFL.DAT must be assigned to logical unit 9. The second output file,
PTPLOT.DAT, contains tabular listings of the electromagnetic calculations. P'T-
PLOT.DAT is intended for plotting purposes. PTPLOT.DAT will contain either

a bistatic or backscatlter pattern, a current distribulion, or frequency sweep data.
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READ 1
READ (8, *) NGO, IWRZM, IWRC, IGMTYP, IMF, IMS, IMP, NSH, BTMAX, ICALC

READ 2
READ (8, *)F

READ 3A
IF (IGMTYP.EQ.2)READ (8, *})ER1, TDE1l, UR]1, TDM1

READS 3B AND 3C
IF (IGMTYP.EQ.3) THEN
READ (8, *)ER1, TDE1,UR1, TDM1, T1
READ (8, *)ER2, TDE2, UR2, TDM2, T2

Qo oo oo a0

ENDIF
C
C READ 4A
READ (8, *) 250, ZS
C
C READ 4B
READ (8, *) ITP, 2A, ZB, WD1
C
C READ 5
READ (8, *)WD2, SGXW, X1, X2
C
C READ 6A
IF (ICALC.EQ.O)READ (8, *) IPAT, DPHI, PHBST
C
C READ 6B
IF ((ICALC.EQ.1) .OR. (ICALC.EQ.2) )READ (8, *)FMC1,FMC2,DFZ, DFC,
&PHIN, PHSC
C
C READ 6C

IF (IPAT.EQ.3)READ (8, *) XI, XF, XS

Figure 18: The FORTRAN READ statements in Z5X.

PTPLOT.DAT must be assigned to logical unit 10.

4.2 Input Data

The input data to ZSX are explained in this section. The input data are
used to describe to the program the problem geometry and indicate the desired
electromagnetic calculations. The input data are obtained via FORTRAN READ
statements. The READ statements and the parameters defined by them will be
explained in this section. Figure 18 shows all the READ statements contained in
ZSX. Note that not every READ statement will be executed in every program run.

The input file, INFIL.DAT, contains the data to be read by the READ statements.
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4.2.1 READ 1: Run Control Parameters

READ 1 defines the following run control parameters:

NGO == run indicator.

= 0 implies input and prin{ out problem description and then stop, i.e., do
not make any electromagnetic calculations.

= 1 implies input problem description and then perform the desired electro-
magnetic calculations. An NGO = 0 run should precede an NGO = | run as
this allows the user to verily the accuracy of the problem description defined

in the input file, INFIL.DAT.

IWRZM = indicator for writing the iinpedance matrix to the output file.
= 0 implies do not write the impedance matrix to the output file.
= 1 implies write the impedance matrix to the output file. Note that this
will result in N2 lines of output. Furthermore, the impedance matrix will be

printed at every angle if a physical optics (PO) basis function is used and a

backscatter pattern is defined.

IWRC = indicator for writing out both the voltage and current vector.
= 0 implies do not write out the voltage or current vector.
= 1 implies write out both the voltage and current vector. Note that for

backscatter patterns this will result in the voltage and current vector being

printed at every angle.

IGMTYP = indicator for the type of multilayered slab geometry.
= | implies a sheet impedance in free space.
= 2 implies a sheet impedance on a material half space.

= 3 implies a sheet impedance located in a K — 2 layered slab.
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IMF = indicator for using a physical optics (PO) basis function.
= 0 implies do not use a PO basis fut' " on. Use this in the case that
Zg(x) # Zgp over a finite range of z.
= 1 implies use a PO basis function. Use this in the case that Zg(z) # Zgy

over a semi-infinite range of z.

il I an e aa

IMS = indicator for using a surface wave basis function.
= 0 implies do not use a surface wave basis function.

= 1 implies use a surface wave basis function. IMS should be set equal to

1 only if: 1) the sheet impedance is NOT purely real and is in free space
(IGMTYP = 1), and 2) the range where Zg(z) # Zg¢ is semi- infinite. ZSX
allows for only one surface wave basis function for the case that the sheet
. impedance is in free space. ZSX computes the surface wave propagation

constant according to Equation (2.48).

IMP = indicator for using pulse basis functions.
= 0 implies do not use any pulse basis functions.

= 1 implies use pulse basis functions. This will almost always be the case.

NSH = number of Simpson’s rule integration segments used per half cycle of
the oscillatory part of the integrand of the spectral integral expression for
Zmn (Equation (2.31).) NSH = 4 typically but can be increased for greater

accuracy.

BTMAX = upper and lower limits of integration used in the expression for Z,,p,
in terms of the maximum wavenumber of the multilayered slab materials,
i.e., limits of integration for Equation (2.31) are £BTMAXxkp_ . where

kDpmaz 18 the maximum wavenumber of any material in the multilayered slab.
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BTMAX must be great enough to allow for convergence of the integral. B'I'-
MAX = 50.0 typically. To check for convergence, BTMAX can be increased

until the impedance matrix elements are stable.

ICALC = indicator for performing frequency sweep computations.
= 0 implies do not perform a frequency sweep computation.
= 1 implies perform a frequency sweep computation using standard quad-
ratic interpolation.
= 2 implies perform a frequency sweep computation using improved quad-
ratic interpolation. This should never be done if a PO basis function is used

(IMF = 1) or if a surface wave basis function is used (INIS ).

4.2.2 READ 2: Frequency

READ 2 defines F - the frequency in Mz at which any pattern or current
distribution calculations are made. I a frequency sweep computation is desired,
then the frequencies are determined via READ 6B. However, READ 2 will be

executed in either case.

4.2.3 READ 3: Material Parameters

Note that READ 3A will be executed only if IGMTYP - 2 and that READ
3B and 3C will be executed only if I[GMTYP = 3 (see READ [). READ 3A

determines the material parameters of the half space if IGMTYP - 2.
ER1 - relative real part of permittivity in material half space.
TDEL = loss tangent of permittivity in material half space.

UR1 = relative real part of permeability in material half space.

TDMT1 = loss tangent of permeability in material half space.




READ 3B and 3C determine the material parameters of the two-layered slab

if IGMTYP = 3.
ER! = relative real part of permittivity in layer k = 1.
TDE1 = loss tangent of permittivity in layer k = 1.
URI1 = relative real part of permeability in layer k = 1.
TDMI1 = loss tangent of permeability in layer k = 1.
T1 = thickness in meters of layer k = 1.

ER2 = relative real part of permittivity in layer k = 2.

TDE2 = loss tangent of permittivity in layer k = 2.
UR2 = relative real part of permeability in layer k = 2.
TDM2 = loss tangent of permeability in layer k£ = 2.

T2 = thickness in meters of layer k = 2.

4.2.4 READ 4: Sheet Impedance
READ 4A defines the constant values of the sheet impedance Zg(z) as follows:

250 = “background” constant sheet impedance Zgg. If the user is interested in
a case where Zgy — 00, such as scattering from a resistive half plane in free
space, then simply set ZS0 equal to a very large number. Experience has

shown that ZS0 = 1025 gives good results in these cases.

ZS = constant value of the sheet impedance (not Zgg) in the range where the
sheet impedance is constant, but not equal to Zgy. For example, set ZS =

ZA for the sheet impedances shown in Figures 3(b), 3(c) and 3(d).
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The width where Zg(z) is constant (not Zgg) is taken to be finite if only pulse
basis functlions are used (see Figure 6(a).) This width is taken to be semi-infinite
going to infinity in the +& - direction il a PO or surface wave basis function is
used (see Figures 6(b) and 6(c).)

READ 4B can be used to define an impedance taper region. An impedance
taper can account for a non-constant sheet impedance like that shown in IMigure
3(d). 7ZSX can allow for only one sheet impedance taper. READ 4B defines the

following:

ITP = indicator for an impedance taper.
= 0 implies do not include an impedance taper.
= 1 implies include a constant impedance taper.
= 2 implies include a linear impedance taper.
= 3 implies include an exponential impedance taper.

= 4 implies include a cosine impedance taper.

ZA = impedance value at the start of the impedance taper. ZA will be the value
of a constant impedance taper if ITP = |. Note that ZA input via this

READ statement is not to be confused with Z,4 of Figures 3 and 6.
7ZB — impedance value atl the end of the impedance taper.
WD1 = width in meters of the impedance taper region.

If ITP > 0 then there will be an impedance taper region. This impedance taper
region starts at ¢ = - WDI and extends to 2 ~ 0. If TP = 1 then the sheet
impedance will have a constant value of ZA over this entire range of x. I TP -

2,3 or 4 then the sheet impedance will have value ZA at @ = -WDI and value
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ZB at ¢ = 0. In these cases, the sheet impedance will taper from ZA to ZB either

linearly, exponentially or cosinusoidally, depending on ITP.

4.2.5 READ 5: Basis Function Description

READ 5 defines the layout of the basis function expansion through the use of

the parameters explained below.

WD2 = width of constant ZS where pulse basis functions will be used. This
parameter has meaning only if IMP = 1. If IMP = 1 then pulse basis

functions are placed from ¢ = 0 to x = WD2.

SGXW = maximum segment size of pulse basis functions in minimum wavelengths
of a layer. SGXW should not exceed 0.25 but has typically been chosen as

0.1 or less.

X1 = the z value in meters where the physical optics basis function starts. X1
has meaning only if IMF = 1. X1 is analogous to zpp of Equation (2.43)

and is typically chosen as 0.0 or WD2.

X2 = the z value in meters where the surface wave basis function starts. X2 has
meaning only if IMS = 1. X2 is analogous to #g of Equation (2.46) and is

typically chosen as 0.0 or WD2.

Note that if an impedance taper region is specified (ITP > 0 in READ 4B) then
pulse basis functions are automatically placed over this region, i.e., il ITP > 0
then pulse basis functions are placed from ¢ = - WDI to ¢ = 0. For pulse basis
functions to be placed over the impedance taper region, INP need not be set be set

to 1l in READ 1. The width of these pulse hasis functions over WD is determined

by SGXW.
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4.2.6 READ 6: Electromagnetic Calculations

Note that READ 6A is executed only if ICALC = 0 and READ 6B is executed
only if ICALC = t or 2 (see READ ). Similarly, RIEAD 6C is executed only if IPAT
= 3in READ 6A. RIEAD 6A specifies whether a pattern or a current distribution is

to be computed. It also defines the pattern using the parameters explained below.

IPAT = indicator for computing either a pattern or a current distribution.
= 0 implies do NOT compute a pattern or a current distribution.
= | implies compule a backscatter pattern.
= 2 implics compute a bistatic scattering patlern.

= 3 implies compute a current distribution (see READ 6C').

DPHI = the angle increment for pattern computations. If IPAT = 1 or 2 the

scattering pattern will be computed every DPHI degrees.

PHBST = the angle of the incident plane wave for bistatic scattering patterns or

current distributions.

READ 6B defines a frequency sweep computation using the parameters ex-

plained below.
FMCI = beginning frequency in Mz for a frequency sweep computation.
FMC2 = ending frequency in MHz for a {frequency sweep computation.
DI'Z = frequency step size in MHz for calculating the impedance matrix.
DFC = frequency step size in Mz for calculating the scattered field.
PHIN - angle of the incident field in degrees.

PHSC = angle of the scattered field in degrees.




If standard interpolation is used (ICALC =1 in READ 1) then the frequency step

size DFZ in MHz is typically set to Afpr/2 where

300
A = —MHz.
far 2L1V z

Here L is the width over which pulse basis functions are placed. Assuming that
pulse basis functions are used (IMP = 1 in READ 1), then L = WD2 if no imped-
ance taper is used (ITP = 0 in READ 4B) and L = WD1 + WD2 if an impedance
taper is used (ITP > 0 in READ 4B). If improved interpolation is used (ICALC =
2in READ 1) then DFZ can be increased to A fjy or more. Recall that improved
interpolation should not be used if either a PO or surface wave basis function is

used.

READ 6C defines the current distribution via the parameters explained below.
XI = the initial value of = in meters for the current distribution.
XF = the final value of z in meters for the current distribution.
XS = the step size of z in meters for the current distribution.

If a current distribution is specified (IPAT = 3 in READ 6A) then the current
induced by a plane wave wcident from ¢y = PHBST is computed. The cuirent

distribution is computed from ¢ = XI to z = XF at increments of XS.
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CHAPTER V

SUMMARY

This report has described the integral equation and MM solution for two-
dimensional TM scattering by a variable sheet impedance in a multilayered slab.
An integral equation was derived for the unknown surface current on the scat-
tering portion of the sheet impedance. The moment method was applied to the
integral equation to obtain an approximate expansion for the unknown surface
current. Simple expressions for the impedance matrix and voltage vector elements
used in the MM solution were obtained. The far field of the basis functions were
determined asymptotically so the far zone scattered field could be obtained analyt-
ically. Numerical results were presented and some results were compared against
measured or previously calculated results.

One important feature of this MM solution is that the impedance matrix
elements and the far zone fields depend upon spectral functions specific to the
geometry of the multilayered slab. Thus, different spectral functions can be used
to apply the MM solution to different multilayered slab geometries. Spectral func-
tions were obtained for a sheet impedance located in a K - 2 layered slab, on
a material half space, or in free space. A user-oriented computer code was writ-
ten to implement this MM solution and can account for the three geometries just
mentioned. A user’s manual for this code was given in Chapter 1V,

Future work in this area might include the computation of transverse clectric
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(TE) scattering by the same geometries analyzed here. This solution will result
in different spectral functions and will require different basis function expansions.
Furthermore, the volume equivalence theorem applied to the thin dielectric slab
may not be valid for near edge-on incidence, and this problem may have to be
treated separately.

Another idea for further study is a more complete analysis of the surface wave
poles and the surface wave basis functions. The MM solution presented in this
report only used surface wave basis functicﬁs when the sheet impedance was in free
space. If the dominant surface wave poles can be determined for more complicated
layered geometries, then their corresponding surface wave basis functions can be

included in the MM current expansions for these geometries.
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APPENDIX A

THE DETERMINATION OF F(8) FOR SEVERAL
MULTILAYERED SLAB GEOMETRIES

This appendix derives the function I'(3) of Equation (2.29) for the two layered
geometry shown in Figure 19. Equations (2.22) and (2.25) are used to express the
clectric field and the tangential magnetic field. The conditions on these ficlds,
listed in Section 2.4, are enforced and the function F(3) is solved for. From this
result, the function F(/3) is also found for the two special limiting cases shown in
Figure 20.

The electric field is expressed as
oo .
Ef(z,z) / | AR(B) e 7 BE(B) R | T d (A1)

and the tangential magnetic field is expressed as

t oo

|
Il,liz(r,z) = - /

jon

W | ARB) e R BE@) e | g (12)

o0
for k=0,1,2,3. 4 is given by
kr - wfeek
Ye 32 k}i where Re(qg) > 0 (-1.3)
tm(qy) — 0.

The first condition on the ficlds is the radiation condition as r -» oo. This

implies that there are only upward travelling waves in region & - 0 and only
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Figure 19: Sketch of two layered geometry containing sheet impedance Zg(z).

downward travelling waves in region k£ = 3. To enforce these properties, it must
be true that

BYB)=0 and 4}(8)=o. (A.4)

The second condition is continuity of the tangential electric field across each

interface. Enforcing this condition yields the following:

[A%(B) e 1] — [AL(B) e Tt 4 Br(B)emT1| =0 (A.5)
[ANB) + BL(B)| - [ 4%(8) + BA(B)| =0 (4.6)
| 42(8) €722 + BE(B) e 22| — [ Bi(B)e T2 ] = 0. (A.7)

The third condition is continuity of the tangential magnetic field across each

interface except the z = 0 interface. Enforcing this condition yields the following:

[A2B) e 10Tt |+ I [an(B)e T - YA T =0 (48)

JWNO Jwpy
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- 2 [A%(B) e 2 - B2(B)e T2 -
J“’#Z

The fourth and final condition is discontinuity of the tangential magnetic field,

[ BY@)e W] =0, (A9)
Jwiy

by the total surface current produced by Jy,, across the z = 0 interface, i.e.,
2 x [H, - Hy*'| =3, (4.10)

where k and k + | represent the regions immediately above and below the z — 0
interface respectively, and J! is the total surface current produced by J,. Since
J!, contains only a g - directed component, then for the K = 2 layered slab this
condition becomes

nlooon? -

nzr nr

= Jt. (A.11)
The (y - polarized) surface current produced by Jy, at the z = 0 interface, is

gt = Ep(z,0) _ iy P},‘t(m,O).
Zs(x) Zsy

Substituting Equations (2.20) and (A.1) into Equation (A.12) yields

(4.12)

J,ﬁ_z / nem’dﬂqtm/ | AL(8) + BXB)| P dB.  (A.13)

Enforcing the fourth condition by substituting Equations (\.2) and (A.13) into
(A.11) yields

-l k) - BU®Y |+ 2 [A28) - BAO)

Jwiey quz

'—jn [ 111(ﬁ n(ﬁ)} . (A'H)

Equations (A.5) - (A.9) and (A.14) form a set of six equations that can bhe
solved for the six unknown functions, A"(3), AL(8). BL(3). A2(3), B2(8), and
Bg(ﬂ) Of primary interest is the expression for the electric field at the z - 0
interface

o

Ep(z,0) - / An(B) + Bo(B)| 7 d. (A.15)

o0
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Noting that regions k = 0 and k = 3 are the same media and solving Equations

(A.5) - (A.9) and (A.14) for AL(B) and BL(8), Equation (A.15) becomes

1 400 - .
El2,0) = _/ F(3) J; 5% 43 (A.16)
27 J-o0
where,
F(3) = #1170 sinh(17T1) + poy1 cosh(nTh)
[Curvo + - pyv1 | sinh(mTy) + | Crom + T p1v0 | cosh(viTh)
(4.17)
and
c-_t . {N?‘TO Cf’$'l(‘¥27'2) + 1972 Sinh(‘rsz)} ' (A4.18)
Zsy  Jwpa | p2v9 sinh(yeT2) + pgye cosh(y2T3)

Now consider the geometry sketched in Figure 20(a). The geometry is a sheet
impedance at 2 = 0 and bordered by free space (yg,€p) for z > 0 and material
medium (p1,€;) for z < 0. This geometry can be considered a limiting case of
the two layered geometry of I'igure 19 where Ty — 0 and Ty — oo. Since region
k = 2 of IFigure 19 becomes region k == 1 of Figure 20(a) then the k = 2 subscripts
will become k = 1 subscripts. Performing these limiting operations on Equations

(A.17) and (A.18) it is obtained that

1

1 00 1

F(B) =
Zso T Jumo T em

(1.19)

for the geometry of Figure 20{a). If the sheet impedance is entirely in free space,
as in Figure 20(b), then in Equation (A.19), gy — py and 1 — 7yp. For this case,

the function F(8) is given by

1

L}iﬂ.

F(B) = —
Zgo " Jwig

(.1.20)

This ends the discussion on the calculation of F(3).
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Figure 20: (a) Sketch of sheet impedance on a material half space. (b) Sketch of
shect impedance in free space.
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APPENDIX B

THE DETERMINATION OF FAR ZONE FIELDS FOR SEVERAL
MULTILAYERED SLAB GEOMETRIES

This appendix finds the far zone electric field of current expansion function
Jin radiating in the presence of the multilayered slab. The electric field expression
of Equation (2.22) for region k& = 0 is evaluated asymptotically for p — oo using
the method of stationary phase. The result is given for the three geometries illus-
trated in Figures 19 and 20. The field is given only for region k = 0 above the
multilayered slab, but by a similar approach, the field below the multilayered slab
can be obtained.

The first order asymptotic approximation to the integral [18]

b .
1)) = / £(8) S0 gy (B.1)
a
for A = oo and ¥'(c) = 0 with @ < ¢ < b and ¢ not too close to a and b, is
2T . 7 .
I(A) = f(c) | ——r IA¥(c) (i SBN YT (c), B.2

Employing Equations (2.22) and (A .4), the field for region k = 0 above the

multilayered slab is

EY (z,2) = /ﬁt: AV () e~ 0% ¢IB7 43, (1B.3)
To get this expression in the form of Equation (B.1) the following substitutions
are made:

r = pcoso
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z = psing
Y = B2 - kf - g/k] - B2

vielding

+00 .il’{ﬂ ('os¢»-‘/k2~/32 sin¢>]
(0, 6) = / AD(B)e 0 da. (B3.4)

ge ol

Using Equation (B.2) with

t - B
A - p
a -+ -00

b — +o0
i)y — An)

P(t) — Bcosd - \/kg ~ A2 sin¢g

c — [33’) = —k(] COSQS

where (s, is the stationary phase poiut, it is obtained that

0 e~ Jkop
Lm(pa ¢) = P"l(¢) \//_’ (BS)
where
Pn(¢) = AN (~ky cos @) \ 2k singeld. (B.6)

it

Note that the spectral function A} (3) is the only term in the expression for E'

m

that depends on the multilayered slab geometry. This makes it straightf{orward
to find the far zone field of a basis function radiating in the presence of a new
multilayered slab geometry. The A? (3) corresponding to the new geometry must

be determined and then inserted into FEquation (B.6).
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The function A% (3) can be found by enforcing the conditions on the fields
given in Section 2.4 and following an approach similar to that outlined in Appendix
A. The result of this operation is that for the two layered geometry of Figure 19

[ - g ] poy1 €700

An(B) =
" [Crivo + 52 pov1 | sinh(v1T1) + [ Crom + 7L-pivg | cosh(yi 1)
(B.7)
where
oo 1 L n (#270 cosh(y2T2) + pyv2 Sinh(vaz)J (B.8)
Zgy  jwpg | pave sinh(y2Ts) + pyy2 cosh(vy2Ty)

The geometry of Figure 20(a) can be considered the limiting case of the two
layered geometry of Figure 19 where T} — 0 and Ty — oo. Since region k = 2
of Figure 19 becomes region k = 1 of Figure 20(a) then the k = 2 subscripts will
become k = 1 subscripts. Performing these limiting operations on Equations (B.7)

and (B.8) it is obtained that

1 5_
—5=J.
An(B) = T = — (B.9)
Z50 t jom T on

for the geometry of Figure 20(a). If the sheet impedance is entirely in free space,
as in Figure 20(b), then in Equation (B.9), 1 — pg and y; — v¢. For this case,

the function 49 (8) is given by

1 5-
—5=J
0/ _ _“Ixdm
Am(B) = T (B-10)
Zsg = Jwho

To obtain a closed form expression for the far zone electric field above the mul-
tilayered slab, the function A2,(3) is evaluated at g = Bsp = —kgcosp. A% (Bsp)
is substituted into Equation (B.6), which is then substituted into Equation (B.5)
yielding a closed form expression for E,,, the far zone field of current expansion
function Jy,. Ep is then used in the evaluation of the voltage vector elements of
Equation (2.36) and for finding the total far zone scattered field. This ends the

discussion on evaluating E,,.
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